Composition

Composition of a function and its inverse:

 $(f^{-1\circ}f)(x) = f^{-1}(f(x)) = x$

The composition of a function and its inverse is the identity function i(x) = x.

Graphs

The graph of a function $f:A \rightarrow B$ is the set of ordered pairs {(a, b) | $a \in A$ and f(a) = b}.

The graph is a subset of A×B that can be used to visualize f in a two-dimensional coordinate system.

Floor and Ceiling Functions

The floor and ceiling functions map the real numbers onto the integers $(R \rightarrow Z)$.

The floor function assigns to $r \in \mathbb{R}$ the largest $z \in \mathbb{Z}$ with $z \leq r$, denoted by $\lfloor r \rfloor$.

Examples: $\lfloor 2.3 \rfloor = 2, \lfloor 2 \rfloor = 2, \lfloor 0.5 \rfloor = 0, \lfloor -3.5 \rfloor = -4$

The ceiling function assigns to $r \in \mathbb{R}$ the smallest $z \in \mathbb{Z}$ with $z \ge r$, denoted by $\lceil r \rceil$.

Examples: [2.3] = 3, [2] = 2, [0.5] = 1, [-3.5] = -3

Now, something about

BooleanAl gebra (section 10.1)

Boolean Algebra

Boolean algebra provides the operations and the rules for working with the set {0, 1}.

These are the rules that underlie electronic circuits, and the methods we will discuss are fundamental to VLSI design.

We are going to focus on three operations:

- Boolean complementation,
- Boolean sum, and
- Boolean product

Boolean Operations

The complement is denoted by a bar (on the slides, we will use a minus sign). It is defined by

-0 = 1 and -1 = 0.

The **Boolean sum**, denoted by + or by OR, has the following values:

1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0

The Boolean product, denoted by \cdot or by AND, has the following values:

 $1 \cdot 1 = 1$, $1 \cdot 0 = 0$, $0 \cdot 1 = 0$, $0 \cdot 0 = 0$

Definition: Let B = {0, 1}. The variable x is called a **Boolean variable** if it assumes values only from B.

A function from B^n , the set $\{(x_1, x_2, ..., x_n) | x_i \in B, 1 \le i \le n\}$, to B is called a Boolean function of degree n.

Boolean functions can be represented using expressions made up from the variables and Boolean operations.

The Boolean expressions in the variables $x_1, x_2, ..., x_n$ are defined recursively as follows:

- 0, 1, x₁, x₂, ..., x_n are Boolean expressions.
- If E₁ and E₂ are Boolean expressions, then (-E₁), (E₁E₂), and (E₁ + E₂) are Boolean expressions.

Each Boolean expression represents a Boolean function. The values of this function are obtained by substituting 0 and 1 for the variables in the expression.

For example, we can create Boolean expression in the variables x, y, and z using the "building blocks" 0, 1, x, y, and z, and the construction rules: Since x and y are Boolean expressions, so is xy. Since z is a Boolean expression, so is (-z). Since xy and (-z) are expressions, so is xy + (-z). ... and so on...

Example: Give a Boolean expression for the Boolean function F(x, y) as defined by the following table:

×	y	F(x, γ)
0	0	0
0	1	1
1	0	0
1	1	0

Possible solution: $F(x, y) = (-x)\cdot y$

Boolean Functions and Expressions Another Example:

×	Y	Ζ	F(x, y, z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Possible solution I: F(x, y, z) = -(xz + y)

Possible solution II: F(x, y, z) = (-(xz))(-y)

There is a simple method for deriving a Boolean expression for a function that is defined by a table. This method is based on **minterms**.

Definition: A literal is a Boolean variable or its complement. A minterm of the Boolean variables x_1 , x_2 , ..., x_n is a Boolean product $y_1y_2...y_n$, where $y_i = x_i$ or $y_i = -x_i$.

Hence, a minterm is a product of n literals, with one literal for each variable.

Boolean Functions and Expressions						
Consider F(x,y,z) again:				F(x, y, z) = 1 if and		
×	y	Ζ	F(x, y, z)	only if:		
0	0	0	1	x = y = z = 0 or		
0	0	1	1	x = y = 0, z = 1 or		
0	1	0	0	x = 1, y = z = 0		
0	1	1	0	Therefore		
1	0	0	1			
1	0	1	0	$\Gamma(X, Y, Z) =$		
1	1	0	0	(-X)(-Y)(-Z) +		
1	1	1	0	$(-x)(-y)^2 + x(-y)(-z)$		